CORRECTION D'EXAMEN BLANC 2024

Yahya MATIOUI

20 juin 2024

www.etude-generale.com

Exercice 1. On considère les points A(1,0,0), B(0,1,0) et C(0,0,1).

- 1. Vérifions que les points A, B et C déterminent un plan (ABC):

 On a $\overrightarrow{AB}(-1,1,0)$ et $\overrightarrow{AC}(-1,0,1)$ et comme $\frac{-1}{-1} \neq \frac{0}{1}$, donc les vecteurs \overrightarrow{AB} et \overrightarrow{AC} ne sont pas colinéaires, par suite les points A, B et C ne sont pas alignés donc les points A, B et C déterminent un plan (ABC).
- 2. Montrons que le vecteur $\overrightarrow{n}(1,1,1)$ est normal au plan (ABC) et que : $\underbrace{x+y+z-1=0}$ son équation on a $\overrightarrow{n}.\overrightarrow{AB}=-1+1+0=0$ et $\overrightarrow{n}.\overrightarrow{AC}=-1+1=0$ donc $\overrightarrow{n}\perp\overrightarrow{AB}$ et $\overrightarrow{n}\perp\overrightarrow{AC}$, ceci signifie que $\overrightarrow{n}(1,1,1)$ est un vecteur normal au plan (ABC). Donc une équation cartésienne du plan (ABC) s'écrit sous la forme

$$x + y + z + d = 0.$$

or
$$A(1,0,0) \in (ABC) \Leftrightarrow 1+0+0+d = 0 \Leftrightarrow d = -1 \operatorname{donc}(ABC) : x + y + z - 1 = 0$$

- 3. Soit (S) l'ensemble des points $M\left(x,y,z\right)$ qui vérifient $MO^{2}+MA^{2}+MB^{2}+MC^{2}=5$
 - (a) Montrons que : $MO^2 + MA^2 + MB^2 + MC^2 = 5 \Leftrightarrow x^2 + y^2 + z^2 \frac{1}{2}x \frac{1}{2}y \frac{1}{2}z \frac{1}{2} = 0$ On a

$$MO^{2} + MA^{2} + MB^{2} + MC^{2} = 5 \Leftrightarrow x^{2} + y^{2} + z^{2} + (1 - x)^{2} + y^{2} + z^{2}$$

$$+ x^{2} + (1 - y)^{2} + z^{2} + x^{2} + y^{2} + (1 - z)^{2} = 5$$

$$\Leftrightarrow 4x^{2} + 4y^{2} + 4z^{2} - 2x - 2y - 2z - 2 = 0$$

$$\Leftrightarrow x^{2} + y^{2} + z^{2} - \frac{1}{2}x - \frac{1}{2}y - \frac{1}{2}z - \frac{1}{2} = 0$$

donc
$$MO^2 + MA^2 + MB^2 + MC^2 = 5 \Leftrightarrow x^2 + y^2 + z^2 - \frac{1}{2}x - \frac{1}{2}y - \frac{1}{2}z - \frac{1}{2} = 0.$$

(b) Déduisons que (S) est une sphère de centre le point $\Omega\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ et de rayon

$$\frac{\sqrt{11}}{4}$$
On a $a = \frac{-1}{2}$, $b = \frac{-1}{2}$, $c = \frac{-1}{2}$ et $d = \frac{-1}{2}$ alors
$$a^2 + b^2 + c^2 - 4d = \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + 2 = \frac{11}{4} > 0$$

donc (S) est une sphère de centre le point $\Omega\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$ et de rayon $R = \frac{\sqrt{\frac{11}{4}}}{2} = \frac{1}{2}$

(c) Calculons $d(\Omega, (ABC))$, puis déduisons que le plan (ABC) coupe la sphère S selon un cercle S

On a
$$d(\Omega, (ABC)) = \frac{|x_{\Omega} + y_{\Omega} + z_{\Omega} - 1|}{\sqrt{3}} = \frac{\left|\frac{-1}{4}\right|}{\sqrt{3}} = \frac{1}{4\sqrt{3}} = \frac{\sqrt{3}}{12}$$

et comme $R = \frac{\sqrt{11}}{4}$ alors $d(\Omega, (ABC)) < R$, ainsi le plan (ABC) coupe la sphère selon un cercle (Γ) .

Montrons que le rayon du cercle (Γ) est $\sqrt{\frac{2}{3}}$:

On a
$$r = \sqrt{R^2 - d^2} = \sqrt{\frac{11}{16} - \frac{3}{144}} = \sqrt{\frac{96}{144}} = \sqrt{\frac{2}{3}}.$$

donc le rayon du cercle (Γ) est $\sqrt{\frac{2}{3}}$.

Montrons que $H\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ est le centre du cercle Γ

Soit le point $H(x_H, y_H, z_H)$ le centre de (Γ) .

On a H est le point d'intersection de la droite (Δ) qui passe par Ω est orthogonale au plan (ABC).

Déterminons une représentation paramétrique de (Δ) :

On a (Δ) passe par Ω est orthogonale au plan (ABC) donc (Δ) est dirigée par un vecteur normal à (ABC).

Soit $\overrightarrow{n}(1,1,1)$ un vecteur normal à (ABC). Donc une représentation pa-

ramétrique de (
$$\Delta$$
) est :
$$\begin{cases} x = \frac{1}{4} + t \\ y = \frac{1}{4} + t \end{cases} / (t \in \mathbb{R}).$$
$$z = \frac{1}{4} + t$$

On a

$$H(x_{H}, y_{H}, z_{H}) \in (ABC) \cap (\Delta) \Leftrightarrow (\exists t \in \mathbb{R}), \begin{cases} x_{H} = \frac{1}{4} + t \\ y_{H} = \frac{1}{4} + t \\ z_{H} = \frac{1}{4} + t \\ x_{H} + y_{H} + z_{H} - 1 = 0 \end{cases}$$

donc

$$\left(\frac{1}{4} + t\right) + \left(\frac{1}{4} + t\right) + \left(\frac{1}{4} + t\right) - 1 = 0 \Leftrightarrow 3t + \frac{3}{4} - 1 = 0 \Leftrightarrow t = \frac{1}{12}$$

donc
$$\begin{cases} t = \frac{1}{4} + \frac{1}{12} \\ t = \frac{1}{4} + \frac{1}{12} \\ t = \frac{1}{4} + \frac{1}{12} \end{cases}$$
 par suite $H\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$.

Donc (Γ) est le cercle de centre $H\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$, et de rayon $\sqrt{\frac{2}{3}}$.

Exercice 2. .

1. Résolvons dans \mathbb{C} l'équation $z^2 - 2\sqrt{3}z + 4 = 0$ On a $\Delta = (-2\sqrt{3})^2 - 4 \times 1 \times 4 = 12 - 16 = -4 < 0$, donc l'équation admet deux solutions complexes conjuguées z_1 et z_2 telles que :

$$z_1 = \frac{-b - i\sqrt{-\Delta}}{2a} = \frac{2\sqrt{3} - 2i}{2} = \sqrt{3} - i \text{ et } z_2 = \overline{z_1} = \sqrt{3} + i. \text{ Donc}$$

$$S = \left\{\sqrt{3} - i, \sqrt{3} + i\right\}$$

- 2. On considère les points $A\left(a\right)$, $B\left(b\right)$ et $C\left(c\right)$ tels que : $a=2,\,b=\sqrt{3}+i$ et c=a+b
 - (a) Montrons que : $|c| = 2\sqrt{2 + \sqrt{3}}$ On a $c = a + b = 2 + \sqrt{3} + i$ donc

$$|c| = \sqrt{\left(2 + \sqrt{3}\right)^2 + 1}$$

$$= \sqrt{4 + 4\sqrt{3} + 4}$$

$$= \sqrt{4\left(2 + \sqrt{3}\right)}$$

$$= 2\sqrt{2 + \sqrt{3}}$$

 $donc c = 2\sqrt{2 + \sqrt{3}}$

(b) Écriture trigonométrique du nombre complexe b

On a
$$|b| = \sqrt{3+1} = 2$$
 donc $b = 2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) = 2\left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right)$.
Déduisons que : $c = 2\left(1 + \cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right)$
On a $c = a+b = 2+2\left(\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right) = 2\left(1 + \cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right)$.

(c) <u>Déduisons que</u> : $arg(c) \equiv \frac{\pi}{12} [2\pi]$ <u>Méthode 1</u>

On a

$$c = a + b$$

$$= 2\left(1 + \cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right)$$

$$= 2\left(2\cos^2\left(\frac{\pi}{12}\right) + 2i\sin\left(\frac{\pi}{12}\right).\cos\left(\frac{\pi}{12}\right)\right)$$

$$= 4\cos\left(\frac{\pi}{12}\right)\left(\cos\left(\frac{\pi}{12}\right) + i\sin\left(\frac{\pi}{12}\right)\right)$$

or $0 < \frac{\pi}{12} < \frac{\pi}{2}$ donc $\cos\left(\frac{\pi}{12}\right) > 0$ donc ceci signifie que $arg\left(c\right) \equiv \frac{\pi}{12} \left[2\pi\right]$ Méthode 2

On a

$$c = 2\left(1 + \cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right)$$

$$= 2\left(e^{i0} + e^{i\frac{\pi}{6}}\right)$$

$$= 2e^{i\frac{\pi}{12}}\left(e^{i\frac{\pi}{12}} + e^{-i\frac{\pi}{12}}\right)$$

$$= 4\cos\left(\frac{\pi}{12}\right) \times e^{i\frac{\pi}{12}}$$

or $0 < \frac{\pi}{12} < \frac{\pi}{2}$ donc $\cos\left(\frac{\pi}{12}\right) > 0$ donc ceci signifie que $arg\left(c\right) \equiv \frac{\pi}{12} \left[2\pi\right]$

(d) Déterminons l'image du point B par la rotation R de centre C et d'angle $\frac{\pi}{6}$ On a

$$e^{i\frac{\pi}{6}}(b-c) + c = -ae^{i\frac{\pi}{6}} + c$$

$$= -2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right) + 2 + \sqrt{3} + i$$

$$= -\sqrt{3} - i + 2 + \sqrt{3} + i$$

$$= 2$$

$$= a$$

 $\operatorname{donc} \, a = e^{i\frac{\pi}{6}} \, (b-c) + c \, \operatorname{c'est-\grave{a}-dire} \, a - c = e^{i\frac{\pi}{6}} \, (b-c) \, \operatorname{donc} \, A \, \operatorname{est \ l'image} \, du \, \operatorname{point} \, B \, \operatorname{par \ la \ rotation} \, R \, \operatorname{de \ centre} \, C \, \operatorname{et \ d'angle} \, \frac{\pi}{6}.$

(e) <u>Déduisons que OBCA est un losange</u> On a c = a + b c'est-à-dire c - b = a donc $\overrightarrow{BC} = \overrightarrow{OA}$ d'ou OBCA est un parallélogramme.

On déduit que OBCA est un parallélogramme et CB = CA ceci signifie que OBCA est un losange.

Exercice 3. .

1. Montrons que : $p(A) = \frac{1}{21}$

On tire simultanément et au hasard 4 boules de l'urne qui contient 9 boules, donc $card(\Omega) = C_9^4 = 126$

On a A : « les quatre boules tirées sont de la même couleur » c'est-à-dire A : $\{RRRR\ ou\ VVVV\}$ donc

$$p(A) = \frac{card(A)}{card(\Omega)} = \frac{C_5^4 + C_4^4}{126} = \frac{6}{126} = \frac{1}{21}$$

2. Montrons que $p(B) = \frac{9}{14}$

On a B : « Obtenir au moins deux boules vertes » c'est-à-dire B : $\{VVRR\ ou\ VVVR\ ou\ VVVV\}$ donc

$$p(B) = \frac{card(B)}{card(\Omega)} = \frac{C_4^2 \times C_5^2 + C_4 \times C_5^1 + C_4^4}{126} = \frac{9}{14}$$

3. Calculons $p(A \cap B)$

On a $A \cap B : \{VVVV\}$ donc $p(A \cap B) = \frac{card(A \cap B)}{card(\Omega)} = \frac{1}{126}$

4. Montrons que la probabilité d'obtenir au moins deux boules vertes, sachant que le tirage des quatre boules sont de la même est $\frac{1}{6}$

On a:
$$p_A(B) = \frac{p(A \cap B)}{p(A)} = \frac{\frac{1}{126}}{\frac{1}{21}} = \frac{1}{126} \times 21 = \frac{1}{6}.$$

5. On peut schématiser cette expérience par un arbre

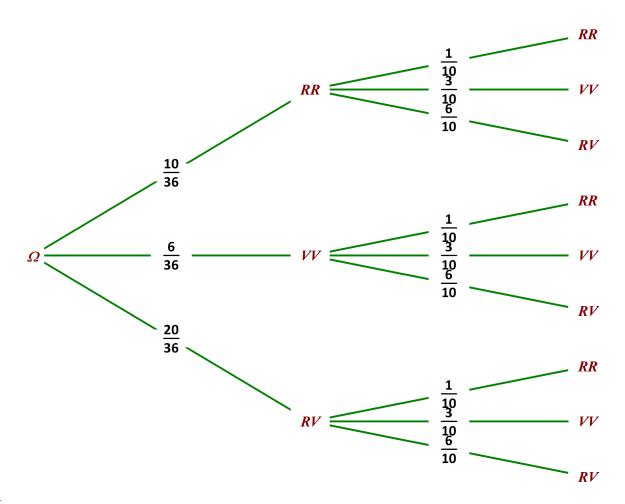


FIGURE 1 -

Réaliser l'événement C c'est tirer : $\{RRVV\ ou\ VVRR\ ou\ RVRV\}$ donc

$$p(C) = \frac{10}{36} \times \frac{3}{10} + \frac{6}{36} \times \frac{1}{10} + \frac{20}{36} \times \frac{6}{10} = \frac{13}{30}$$

Problème 1. .

- I) On considère la fonction g définie sur $]0, +\infty[$ par $: g(x) = e^{-x+1} + \frac{1}{x} 2$
- 1. Calculons $\lim_{x \to +\infty} g(x)$ et $\lim_{x \to 0^+} g(x)$:

On a
$$\lim_{x \to +\infty} -x+1 = -\infty$$
 donc $\lim_{x \to +\infty} e^{-x+1} = \lim_{X \to -\infty} e^X = 0$ $\left(\begin{array}{c} X = -x+1 \\ x \to +\infty \Rightarrow X \to -\infty \end{array}\right)$ et comme $\lim_{x \to +\infty} \frac{1}{x} - 2 = -2$ par suite $\lim_{x \to +\infty} g(x) = -2$

On a
$$\begin{cases} \lim_{x \to 0^+} e^{-x+1} - 2 = e - 2\\ \lim_{x \to 0^+} \frac{1}{x} = +\infty \end{cases}$$
 donc
$$\lim_{x \to 0^+} e^{-x+1} + \frac{1}{x} - 2 = +\infty \text{ par suite}$$

$$\lim_{x \to 0^+} g(x) = +\infty$$

2. Calculons g'(x) pour tout x > 0, puis déduisons que g est strictement décroissante sur $]0,+\infty[$

la fonction g est dérivable sur $]0,+\infty[$, et pour tout $x\in]0,+\infty[$ on a

$$g'(x) = \left(e^{-x+1} + \frac{1}{x} - 2\right)' = -e^{-x+1} - \frac{1}{x^2} = -\left(e^{-x+1} + \frac{1}{x^2}\right)$$
 donc $(\forall x > 0), g'(x) = -\left(e^{-x+1} + \frac{1}{x^2}\right)$.

On a $e^{-x+1} + \frac{1}{x^2} > 0$ pour tout x > 0 donc $(\forall x > 0), g'(x) < 0$. Par suite la fonction q est strictement décroissante sur $]0, +\infty[$.

3. Calculons
$$g\left(1\right)$$
, puis déduisons que
$$\begin{cases} g\left(x\right) \leq 0 \ si & x \geq 1 \\ g\left(x\right) > 0 \ si & 0 < x < 1 \end{cases}$$

On a
$$g(1) = e^{-1+1} + 1 - 2 = 0$$
.

La fonction g est strictement décroissante sur $]0, +\infty[$ donc $x \ge 1 \Rightarrow g(x) \le g(1) \Rightarrow g(x) \le 0$, donc $(\forall x \ge 1), g(x) \le 0$.

$$0 < x < 1 \Rightarrow g(x) > g(1) \Rightarrow g(x) > 0$$
, donc $(\forall x \in [0, 1]), g(x) > 0$.

Conclusion:
$$\begin{cases} (\forall x \ge 1), g(x) \le 0 \\ (\forall x \in]0, 1[), g(x) > 0 \end{cases}$$

- II) On considère la fonction f définie sur $]0, +\infty[$ par : $f(x) = (1-x)e^{-x+1}$ $x^2 + 5x - 3 - 2lnx$
- 1. Montrons que : $\lim_{x\to 0^+} f(x) = +\infty$, puis interprétons géométriquement le résultat

On a
$$\begin{cases} \lim_{x \to 0^+} (1-x) e^{-x+1} = e \\ \lim_{x \to 0^+} -x^2 + 5x - 3 = -3 \\ \lim_{x \to 0^+} -2lnx = +\infty \end{cases}$$
 donc
$$\lim_{x \to 0^+} f(x) = +\infty.$$
 La courbe (C_f) admet une asymptote verticale d'équation $x = 0$.

2. .

(a) Montrons que :
$$\lim_{x \to +\infty} f(x)$$

On a $\lim_{x \to +\infty} 1 - x = -\infty$ donc $\lim_{x \to +\infty} (1 - x) e^{-x+1} = \lim_{X \to -\infty} X e^X = 0$.

on a
$$\lim_{x \to +\infty} -x^2 + 5x - 3 - 2lnx = \lim_{x \to +\infty} x^2 \left(-1 + \frac{5}{x} - \frac{3}{x^2} - 2\frac{lnx}{x^2} \right) = -\infty,$$
 donc $\lim_{x \to +\infty} f(x) = -\infty$

(b) Montrons que : $\lim_{x\to +\infty} \frac{f(x)}{x} = -\infty$, puis interprétons géométriquement le résultat

On a
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(\frac{1}{x} - 1\right) e^{-x+1} - x + 5 - \frac{3}{x} - 2\frac{\ln x}{x}$$
 on a $\lim_{x \to +\infty} \frac{1}{x} - 1 = -1$ et $\lim_{x \to +\infty} e^{-x+1} = 0$ donc $\lim_{x \to +\infty} \left(\frac{1}{x} - 1\right) e^{-x+1} = 0$ de plus $\lim_{x \to +\infty} -2\frac{\ln x}{x} = 0$ et $\lim_{x \to +\infty} -x + 5 - \frac{3}{x} = -\infty$ par suite
$$\lim_{x \to +\infty} \left(\frac{1}{x} - 1\right) e^{-x+1} - x + 5 - \frac{3}{x} - 2\frac{\ln x}{x} = -\infty$$
 c'est-à-dire $\lim_{x \to +\infty} \frac{f(x)}{x} = -\infty$.

La courbe (C_f) admet une branche parabolique de direction l'axe des ordonnées au

- 3. On pose h(x) = f(x) x
 - (a) Montrons que 1 est la seule solution de l'équation h(x) = 0La fonction h est continue et strictement décroissante sur $]0, +\infty[$ donc $h(]0, +\infty[) = \mathbb{R}$ et comme $0 \in \mathbb{R}$ par suite l'équation h(x) = 0 admet une seule solution dans $]0, +\infty[$.

Or h(1) = f(1) - 1 = 0, donc 1 est la seule solution de l'équation h(x) = 0.

(b) Déduisons la position relative de (C_f) par rapport à la droite $(\Delta): y = x$ La fonction h est strictement décroissante sur $]0, +\infty[$ et h(1) = 0, donc $x > 1 \Rightarrow h(x) < h(1) \Rightarrow h(x) < 0 \Rightarrow f(x) - x < 0$, d'ou

$$(\forall x > 1), f(x) < x$$

la courbe (C_f) est au-dessous de la droite (Δ) sur $]1,+\infty[$

$$0 < x < 1 \Rightarrow h(x) > h(1) \Rightarrow h(x) > 0 \Rightarrow f(x) - x > 0$$
 d'ou
$$(\forall x \in]0,1[), f(x) > x$$

la courbe (C_f) est au-dessus de la droite (Δ) sur]0,1[.

$$(C_f) \cap (\Delta) = \{A(1,1)\}\$$

4. .

(a) Montrons que f'(x) = (x-2)g(x) pour tout x > 0La fonction f est dérivable sur $]0, +\infty[$, et pour tout x > 0 on a

$$f'(x) = -e^{-x+1} + (1-x) \times (-e^{-x+1}) - 2x + 5 - \frac{2}{x}$$

$$= -2e^{-x+1} + xe^{-x+1} - 2x + 5 - \frac{2}{x}$$

$$= -2e^{-x+1} + 4 + x(e^{-x+1} - 2) + 1 - \frac{2}{x}$$

$$= -2(e^{-x+1} - 2) + x(e^{-x+1} - 2) + \frac{x-2}{x}$$

$$= (e^{-x+1} - 2)(x-2) + \frac{x-2}{x}$$

$$= (x-2)(e^{-x+1} - 2 + \frac{1}{x})$$

$$= (x-2)g(x)$$

 $\operatorname{donc}\left[\left(\forall x>0\right),f'\left(x\right)=\left(x-2\right)g\left(x\right)\right]$

(b) Le tableau de variation de la fonction f sur $]0, +\infty[$

D'après la partie 1, on déduite le tableau de signe suivant

x	0	1		2	$+\infty$
x-2	1		_	þ	+
g(x)	+	þ	_		_
f'(x)	_	þ	+	þ	_

FIGURE 2 -

donc

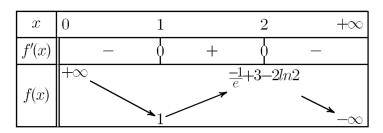


FIGURE 3 -

(c) Montrons que f(x) = 0 admet une unique solution α sur $]0, +\infty[$: *Sur l'intervalle]0, 2[la fonction f admet 1 comme minimum en 1 donc $(\forall x \in]0, 2[), f(x) > 1$ et puisque 1 > 0 donc

$$(\forall x \in]0,2[), f(x) > 0.$$

Par suite l'équation f(x) = 0 n'admet pas de solutions dans l'intervalle [0, 2[.

*La fonction f est continue et strictement décroissante sur l'intervalle $[2, +\infty[$. Donc $f([2, +\infty[) =] - \infty, f(2)]$ et puisque $0 \in]-\infty, f(2)]$,

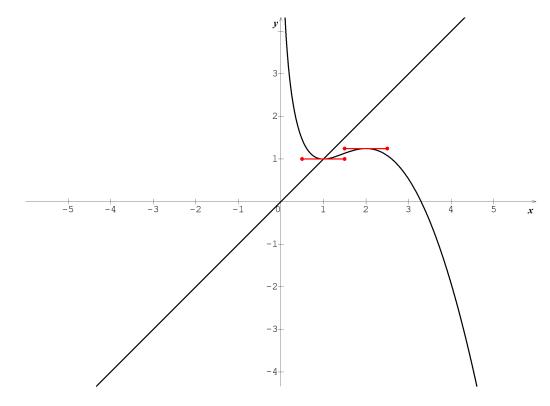
alors l'équation f(x) = 0 admet une solution unique α dans l'intervalle $[2, +\infty[$.

Conclusion: l'équation f(x) = 0 admet une unique solution α dans $]0, +\infty[$.

Montrons que : $3, 2 < \alpha < 3, 4$

La fonction f est continue sur [3,2;3,4] et comme $f(3,2) \times f(3,4) < 0$ donc d'après T.V.I on déduit que : $3,2 < \alpha < 3,4$.

5. On construit la droite (Δ) et la courbe (C_f) :



III)

1. En utilisant une intégration par parties, montrons que : $\int_1^2 2ln(x)dx = 4ln(2) - 2$ et $\int_1^2 (1-x)e^{-x+1}dx = 2e^{-1} - 1$

On a
$$\int_{1}^{2} 2ln(x)dx = 2\int_{1}^{2} lnxdx$$

on pose $\begin{cases} u'(x) = 1 \\ v(x) = lnx \end{cases} \Rightarrow \begin{cases} u(x) = x \\ v'(x) = \frac{1}{x} \end{cases}$ donc

$$\int_{1}^{2} 2lnxdx = 2\left([xlnx]_{1}^{2} - \int_{1}^{2} 1dx\right) = 2\left(2ln2 - [x]_{1}^{2}\right) = 4ln(2) - 2$$
On pose $\begin{cases} u(x) = 1 - x \\ v'(x) = e^{-x+1} \end{cases} \Rightarrow \begin{cases} u'(x) = -1 \\ v(x) = -e^{-x+1} \end{cases}$ donc

$$\int_{1}^{2} (1 - x) e^{-x+1} dx = \left[(x - 1)e^{-x+1}\right]_{1}^{2} - \int_{1}^{2} e^{-x+1} dx$$

$$= e^{-1} - \left[-e^{-x+1}\right]_{1}^{2}$$

$$= e^{-1} - \left(-e^{-1} + e^{0}\right)$$

$$= e^{-1} + e^{-1} - 1$$

$$= 2e^{-1} - 1$$

2. Déduisons en cm^2 l'aire de la surface délimitée par (C_f) , les droites (Δ) , x = 1 et x = 2 On a $\mathcal{A} = \int_1^2 |f(x) - x| dx \times ua$ or comme $(\forall x \in [1, 2])$, $f(x) - x \leq 0$ donc |f(x) - x| = x - f(x) par suite

$$\int_{1}^{2} |f(x) - x| \, dx = \int_{1}^{2} x - f(x) \, dx$$

$$= \int_{1}^{2} x - \left((1 - x) e^{-x+1} - x^{2} + 5x - 3 - 2lnx \right) dx$$

$$= \int_{1}^{2} - (1 - x) e^{-x+1} + x^{2} - 4x + 3 + 2lnx dx$$

$$= -\int_{1}^{2} (1 - x) e^{-x+1} dx + \int_{1}^{2} x^{2} - 4x + 3dx + \int_{1}^{2} 2lnx dx$$

$$= 1 - 2e^{-1} + \left[\frac{x}{3} - 2x^{2} + 3x \right]_{1}^{2} + 4ln(2) - 2$$

$$= 1 - 2e^{-1} + \left(\frac{8}{3} - 8 + 6 - \frac{1}{3} + 2 - 3 \right) + 4ln(2) - 2$$

$$= -4 - 2e^{-1} + \frac{7}{3} + 4ln(2)$$

et comme $ua = 4cm^2 \text{ donc} \left[A = 4 \left(-4 - 2e^{-1} + \frac{7}{3} + 4ln(2) \right) cm^2 \right]$

- IV On considère la suite (u_n) définie par : $u_0 = ln(3)$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$.
- Montrons que : 1 ≤ u_n ≤ 2 pour tout n ∈ N
 Pour n = 0, on a u₀ = ln (3) et comme 1 ≤ u₀ ≤ 2 donc la proposition est vraie pour n = 0.
 Soit n ∈ N. On suppose que 1 ≤ u_n ≤ 2 et on montre que 1 ≤ u_{n+1} ≤ 2.

Soit $n \in \mathbb{N}$. On suppose que $1 \le u_n \le 2$ et on montre que $1 \le u_{n+1} \le 2$ On a la fonction f est strictement croissante sur [1,2] donc

$$1 \le u_n \le 2 \Rightarrow f(1) \le f(u_n) \le f(2) \Rightarrow 1 \le u_{n+1} \le -e^{-1} + 3 - 2ln2$$

et comme $-e^{-1} + 3 - 2ln2 \le 2$ donc $1 \le u_{n+1} \le 2$.

D'après le principe de la récurrence on déduit que $\forall n \in \mathbb{N}, 1 \leq u_n \leq 2$

2. <u>Déterminons la monotonie de la suite</u> (u_n) On a $(\forall x \in [1,2])$, $f(x) \leq x$ (d'après la question 3-b) Soit $n \in \mathbb{N}$, on a $u_n \in [1,2]$ d'ou $f(u_n) \leq u_n$ c'est-à-dire $(\forall n \in \mathbb{N})$, $u_{n+1}-u_n \leq 0$. Ceci signifie que la suite (u_n) est décroissante. Déduisons la convergence de la suite (u_n)

La suite (u_n) est décroissante et minorée par 1, donc elle converge.

3. Calculons $\lim_{n\to+\infty} u_n$ La fonction f est continue sur [1,2] et $f([1,2]) \subset [1,2]$ et la suite (u_n) est définie par : $\begin{cases} u_0 \in [1,2] \\ (\forall n \in \mathbb{N}), u_{n+1} = f(u_n) \end{cases}$ et comme la suite (u_n) est convergente donc sa limite est la solution de l'équa-

tion f(x) = x dans [1, 2].

Soit $x \in [1, 2]$, on a

$$f(x) = x \Leftrightarrow f(x) - x = 0 \Leftrightarrow h(x) = 0$$

or 1 est la seule solution de l'équation h(x) = 0, ceci signifie que

$$\lim_{n \to +\infty} u_n = 1$$