Matière: Mathématiques Professeur: Yahya MATIOUI

FONCTIONS EXPONENTIELLES EXERCICES CORRIGES

PROBLEME 1.

Partie 01 On considère la fonction g définie sur \mathbb{R} par : $g(x) = e^{2x} - 2x$

- 1) Calculer g'(x) pour tout x de \mathbb{R} puis montrer que g est croissante sur $[0, +\infty[$ et décroissante sur $]-\infty, 0]$.
- **2)** En déduire que : $(\forall x \in \mathbb{R})$, g(x) > 0. (g(0) = 1).

Partie 02 On considère la fonction f définie sur \mathbb{R} par : $f(x) = \ln(e^{2x} - 2x)$

Soit (C) la courbe représentative de la fonction f dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$.

- 1) a) Montrer que : $\lim_{x \to -\infty} f(x) = +\infty$.
 - **b)** Vérifier que : $(\forall x \in \mathbb{R}^*)$, $\frac{f(x)}{x} = \left(\frac{e^{2x}}{x} 2\right) \times \frac{\ln(e^{2x} 2x)}{e^{2x} 2x}$.
 - c) Montrer que : $\lim_{x \to -\infty} \frac{f(x)}{x} = 0$.
 - d) En déduire que la courbe (C) admet au voisinage de $-\infty$, une branche parabolique dont on précisera la direction.
- **2) a)** Vérifier que : $(\forall x \in [0, +\infty[), 1 \frac{2x}{e^{2x}} > 0 \text{ et que} : 2x + \ln\left(1 \frac{2x}{e^{2x}}\right) = f(x)$
 - **b)** En déduire que : $\lim_{x \to +\infty} f(x) = +\infty$.
 - **c)** Montrer que la droite (D) d'équation y = 2x est une asymptote oblique à la courbe (C) au voisinage de $+\infty$.
 - **d)** Montrer que : $(\forall x \in [0, +\infty[), f(x) 2x \le 0, et en déduire que (C) est en-dessous de (D) sur l'intervalle <math>[0, +\infty[$.
- **3)** a) Montrer que: $(\forall x \in \mathbb{R}), f'(x) = \frac{2(e^{2x} 1)}{g(x)}$
 - **b)** Étudier le signe de f'(x) pour tout x de \mathbb{R} puis le tableau de variations de la fonction f.
- **4)** Tracer (D) et (C) dans le repère $(O, \overrightarrow{i}, \overrightarrow{j})$.

PROBLEME 2.

Partie 01 .Soit g la fonction définie sur \mathbb{R} par : $g(x) = e^x - 2x$

- 1) Calculer g'(x) pour tout x de \mathbb{R} puis en déduire que g est décroissante sur $]-\infty, \ln 2]$ et croissante sur $[\ln 2, +\infty[$.
- 2) Vérifier que : $g(\ln 2) = 2(1 \ln 2)$ puis déterminer le signe de $g(\ln 2)$.
- **3)** En déduire que : $(\forall x \in \mathbb{R}), g(x) > 0.$

Partie 02 . On considére la fonction f définie sur \mathbb{R} par : $f(x) = \frac{x}{e^x - 2x}$

et soit (C) la courbe représentative de f dans un repére orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$ (unité : 1cm)

- 1) a) Montrer que : $\lim_{x \to +\infty} f(x) = 0$ et $\lim_{x \to -\infty} f(x) = -\frac{1}{2}$.
 - b) Interpréter géométriquement chacun des deux derniers résultats.
- **2) a)** Montrer que : $(\forall x \in \mathbb{R})$, $f'(x) = \frac{(1-x)e^x}{(e^x 2x)^2}$
 - **b)** Étudier le signe de f'(x) sur \mathbb{R} puis dresser le tableau de variations de la fonction f sur \mathbb{R} .
 - c) Montrer que y = x est une équation de la droite (T) tangente à la courbe (C) au point O origine du repére.
- 3) Tracer dans le même repère $(O, \overrightarrow{i}, \overrightarrow{j})$, la droite (T) et la courbe (C).

 (on prendra $\frac{1}{e-2} \simeq 1, 4$ et on admettra que la courbe (C) a deux points d'inflexion l'abscisse de l'un appartient à l'intervalle]0,1[et l'abscisse de l'autre est supérieur à $\frac{3}{2}$).
- **4)** Montrer que : $(\forall x \in [0, +\infty[), xe^{-x} \le \frac{x}{e^x 2x} \le \frac{1}{e 2})$

1.

FIN

Pr: Yahya MATIOUI

www.etude - generale.com