Matière : Mathématiques Professeur : Yahya MATIOUI

Devoir Surveillé N3 Durée 1H

EXERCICE 1 (9 points)

On considère la suite numérique $(u_n)_{n\in\mathbb{N}}$ définie par : $(\forall n\in\mathbb{N})$, $\begin{cases} u_{n+1} = \frac{2}{5}u_n + 3\\ u_0 = 4 \end{cases}$

- 1. Montrer que : $(\forall n \in \mathbb{N})$, $u_n < 5$. (1, 5 pts)
- 2. Vérifier que : $(\forall n \in \mathbb{N})$, $u_{n+1} u_n = \frac{3}{5}(5 u_n)$, puis déduire la monotonie de la suite $(u_n)_{n \in \mathbb{N}}$. (2 pts)
- 3. Déduire que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente. (1 pt)
- 4. Soit $(v_n)_{n\in\mathbb{N}}$ la suite numérique telle que : $(\forall n\in\mathbb{N})$, $v_n=5-u_n$
 - a) Montrer que la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique et exprimer v_n en fonction de n. (1,5 pts)
 - **b)** Déduire que : $(\forall n \in \mathbb{N})$, $u_n = 5 \left(\frac{2}{5}\right)^n$, puis déterminer : $\lim_{n \to +\infty} u_n$. (1, 5 pts)
 - c) Pour tout $n \in \mathbb{N}^*$, on pose : $S_n = v_0 + v_1 + ... + v_{n-1}$, considérons la suite $(w_n)_{n \in \mathbb{N}^*}$ définie par : $w_n = \frac{3S_n}{5}$.

 Montrer que $\lim_{n \longrightarrow +\infty} w_n = 1$. $(1, 5 \ pts)$

EXERCICE 2 (10 points)

Soit f la fonction définie sur $]0, +\infty[$ par : $f(x) = \frac{x}{2} + \frac{2}{x}$.

- 1. Calcular $\lim_{x \to +\infty} f(x)$. (1 pt)
- 2. Justifier la dérivabilité de la fonction f sur $]0, +\infty[$, puis montrer que pour tout $x \in]0, +\infty[$ on a $f'(x) = \frac{(x-2)(x+2)}{2x^2}$ (1,5 pts)
- 3. Déduire la monotonie de la fonction f sur [2,3], puis montrer que : $f([2,3]) \subset [2,3]$. (2 pts)
- 4. Montrer que : $(\forall x \in [2,3])$, $f(x) \le x$. (1 pt)
- 5. On considére la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $(\forall n\in\mathbb{N})$, $\begin{cases} u_{n+1}=f\left(u_n\right) \\ u_0=3 \end{cases}$

- a) Montrer que : $(\forall n \in \mathbb{N}), 2 \leq u_n \leq 3. (1 pt)$
- **b)** Montrer que la suite (u_n) est décroissante, puis déduire qu'elle est convergente. (2 pts)
- c) Calculer $\lim_{n \to +\infty} u_n$. (1, 5 pts)

+1 pour la bonne présentation de la copie

FIN

Pr: Yahya MATIOUI

www.etude-generale.com