Matière : Mathématiques Professeur : Yahya MATIOUI

Les applications

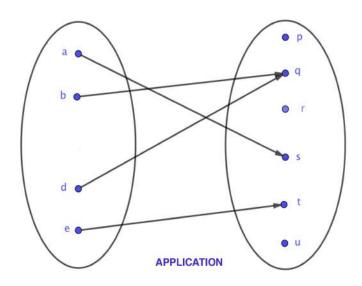
Généralités sur les applications

Définition d'une application

Définition 1 Soit f une fonction d'un ensemble non vide E vers un ensemble non vide F. f est une application de E vers F si et seulement si tout élément de l'ensemble de départ E a une et une seule image dans l'ensemble d'arrivée F par f.

Avec des quantificateurs, cela donne Soit f une fonction d'un ensemble E vers un ensemble F.

$$f \quad application \iff (\forall x \in E), ((\exists ! y \in F) / y = f(x))$$



Remarque 2 L'ensemble des applications de E vers F se note A(E,F) ou plus fréquemment F^E .

Égalité de deux applications

Définition 3 Deux applications $f, g : E \longrightarrow F$ sont égales si et seulement si pour tout $x \in E$, f(x) = g(x). On note alors f = g.

Image directe, image réciproque d'une partie par une application Image directe

Définition 4 Soient E et F deux ensembles non vides puis f une application de E vers F. Soit A une partie de E. L'image directe de la partie A par l'application f, notée f(A), est l'ensemble des images des éléments de A par f.

$$f(A) = \{ f(x), \ x \in A \}.$$

Avec des quanticateurs, cela donne :

Soient E et F deux ensembles non vides puis $f \in F^E$. Soit $A \subset E$.

$$(\forall y \in F), \forall y \in f(A) \iff \exists x \in A/y = f(x)$$

Exemple 5 Soit f l'application définie par :

$$f : \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto x^2 + 2x$$

Montrer que : f([-1,1]) = [-1,3].

On montre les doubles inclusions.

 \blacksquare \subset) Soit $y \in f([-1,1])$, il existe x de [-1,1] tel que f(x) = y.

 $On \ a:$

$$f(x) = x^2 + 2x = (x^2 + 2x + 1) - 1 = (x + 1)^2 - 1$$

comme $-1 \le x \le 1$, alors : $0 \le x + 1 \le 2$, donc : $-1 \le (x + 1)^2 - 1 \le 3$.

 $Donc: y \in [-1, 3], \ c'est-\grave{a}-dire: f([-1, 1]) \subset [-1, 3].$

■ ⊃) Soit $y \in [-1,3]$. Résolvons l'équation f(x) = y dans [-1,1]. Soit $x \in [-1,1]$.

$$f(x) = y \iff x^2 + 2x = y$$

$$\iff (x+1)^2 = y+1$$

$$\iff x+1 = \sqrt{y+1} , x+1 \ge 0 \text{ et } y+1 \ge 0$$

$$\iff x = \sqrt{y+1} - 1$$

comme $y \in [-1,3]$, alors : $-1 \le \sqrt{y+1} - 1 \le 1$, d'où : $y \in f([-1,1])$. Ce qui siginfie que : $[-1,3] \subset f([-1,1])$.

Finalement:

$$f([-1,1]) = [-1,3]$$

Exemple 6 On considère deux ensembles non vides E et F. Soit $f: E \longrightarrow F$ une application.

Soient A et B deux éléments de P(E).

Montrer que si $A \subset B$ alors $f(A) \subset f(B)$.

• Soit $y \in f(A)$, il existe $x \in A$ tel que y = f(x).

Puisque $A \subset B$, on a $x \in B$ donc $f(x) \in f(B)$, c'est-à-dire : $y \in f(B)$. Donc :

$$f(A) \subset f(B)$$

Théorème 7 Soient E et F deux ensembles non vides puis f une application de E vers F.

- 1. $\forall (A, B) \in (P(E))^2$, $f(A \cup B) = f(A) \cup f(B)$
- 2. $\forall (A, B) \in (P(E))^2$, $f(A \cap B) \subset f(A) \cap f(B)$

Démonstration 8.

- 1. On procède par double inclusion.
 - Soit $y \in f(A \cup B)$, il existe $x \in A \cup B$ tel que y = f(x). Si $x \in A$ alors $y \in f(A)$. Si $x \notin A$, c'est alors que $x \in B$ et donc $y \in f(B)$. Dans les deux cas, on a bien $y \in f(A) \cup f(B)$.
 - Soit $y \in f(A) \cup f(B)$. Si $y \in f(A)$, alors il existe $x \in A$ tel que y = f(x). Mais alors $x \in A \cup B$ et donc $y \in f(A \cup B)$. Si $y \notin f(A)$, alors y est nécessairement dans f(B) et il existe $x \in B$ tel que

y = f(x). Or dans ce cas, on a aussi $x \in A \cup B$ et de fait $y \in f(A \cup B)$.

Dans les deux cas, on a bien $y \in f(A \cup B)$. D'où

$$f(A \cup B) = f(A) \cup f(B)$$

2. Soit $y \in f(A \cap B)$, alors il existe $x \in A \cap B$ tel que y = f(x).

Comme $x \in A \cap B$, alors $x \in A$ ce qui signifie que $f(x) \in f(A)$, c'est-à-dire $y \in f(A)$. De même $x \in B$, ce qui signifie que $f(x) \in f(B)$ c'est-à-dire $y \in f(B)$.

Donc $y \in f(A)$ et $y \in f(B)$, alors $y \in f(A) \cap f(B)$. D'où

$$f(A \cap B) \subset f(A) \cap f(B)$$

Image réciproque

Définition 9 Soient E et F deux ensembles non vides puis f une application de E vers F. Soit B une partie de F. L'image réciproque de la partie B par l'application f, notée $f^{-1}(B)$, est l'ensemble des antécédents des éléments de B par f.

$$f^{-1}(B) = \{x \in E / f(x) \in B\}$$

Avec des quantificateurs, cela donne

Soient E et F deux ensembles non vides puis $f \in F^E$. Soit $B \subset F$.

$$\left(\forall x\in E\right),\ x\in f^{-1}\left(B\right)\iff f\left(x\right)\in B$$

Exemple 10 Soit f l'application définie par :

$$\begin{array}{cccc} f & : & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & & x & \longmapsto & \frac{2x}{x^2 + 1} \end{array}$$

Montrer que : $f^{-1}([-1,1]) = \mathbb{R}$.

 \blacksquare Soit $x \in \mathbb{R}$.

$$x \in f^{-1}([-1,1]) \iff f(x) \in [-1,1]$$

$$\iff -1 \le f(x) \le 1$$

$$\iff -1 \le \frac{2x}{x^2 + 1} \le 1$$

$$\iff \left| \frac{2x}{x^2 + 1} \right| \le 1$$

$$\iff \frac{|2x|}{x^2 + 1} \le 1$$

$$\iff 2|x| \le x^2 + 1$$

$$\iff 0 \le (|x| - 1)^2$$

$$\iff x \in \mathbb{R}$$

Donc

$$f^{-1}\left(\left[-1,1\right]\right) = \mathbb{R}$$

Exemple 11 On considère deux ensembles non vides E et F. Soit $f: E \longrightarrow F$ une application.

Soient A et B deux éléments de P(E). Montrer que si $A \subset B$, alors $f^{-1}(A) \subset f^{-1}(B)$.

■ Soit $x \in f^{-1}(A)$, alors $f(x) \in A$ et comme $A \subset B$ donc : $f(x) \subset B$, Ceci signifie que : $x \in f^{-1}(B)$.

Donc

$$f^{-1}(A) \subset f^{-1}(B).$$

Théorème 12 Soient E et F deux ensembles non vides puis f une application de E vers F.

1.
$$f^{-1}(\varnothing) = \varnothing$$

2.
$$\forall A \in P(F), f^{-1}(\overline{A}) = \overline{f^{-1}(A)}$$

3.
$$\forall (A, B) \in (P(F))^2$$
, $f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$

4.
$$\forall (A, B) \in (P(F))^2, f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

Démonstration 13.

- 1. Immédiat.
- 2. Soit $A \subset F$. Soit $x \in E$.

$$x \in f^{-1}(\overline{A}) \iff f(x) \in \overline{A} \iff f(x) \notin A \iff x \notin f^{-1}(A) \iff x \in \overline{f^{-1}(A)}$$

3. Soient A et B deux parties de F. Soit $x \in E$.

$$x \epsilon f^{-1}(A \cup B) \iff f(x) \epsilon A \cup B$$

$$\iff f(x) \epsilon A \text{ ou } f(x) \epsilon B$$

$$\iff x \epsilon f^{-1}(A) \text{ ou } x \epsilon f^{-1}(B)$$

$$\iff x \epsilon f^{-1}(A) \cup f^{-1}(B)$$

Donc on obtient:

$$f^{-1}(A \cup B) = f^{-1}(A) \cup f^{-1}(B)$$

4. Soient A et B deux parties de F. Soit $x \in E$.

$$x \epsilon f^{-1}(A \cap B) \iff f(x) \epsilon A \cap B$$

$$\iff f(x) \epsilon A \text{ et } f(x) \epsilon B$$

$$\iff x \epsilon f^{-1}(A) \text{ et } x \epsilon f^{-1}(B)$$

$$\iff x \epsilon f^{-1}(A) \cap f^{-1}(B)$$

Donc on obtient:

$$f^{-1}(A \cap B) = f^{-1}(A) \cap f^{-1}(B)$$

Exemple 14 Soient E et F deux ensembles non vides puis f une application de E vers F.

- 1. $\forall A \in P(E), A \subset f^{-1}(f(A)).$
- 2. $\forall B \in P(F), f(f^{-1}(B)) \subset B.$
 - \blacksquare Soit A une partie de E. Soit $x \in E$.

$$x \in A \implies f(x) \in f(A) \iff x \in f^{-1}(f(A))$$

■ Soit $B \in P(F)$.Soit $x \in f(f^{-1}(B))$, il existe $y \in f^{-1}(B)$ tel que x = f(y). Comme $y \in f^{-1}(B)$ donc $f(y) \in B$, c'est-à-dire $x \in B$.

Injections, Surjections, Bijections

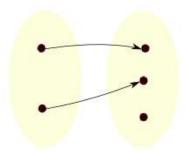
Injection (ou applications injectives)

Définition 15 Soit f une application d'un ensemble non vide E vers un ensemble non vide F.

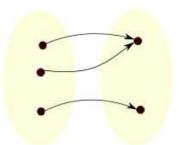
f est injective si et seulement si tout élément de l'ensemble d'arrivée F a **au plus** un antécédent dans E par f (c'est-à-dire soit pas d'antécédent, soit exactement un antécédent).

Avec les quantificateurs, cela donne

f injective
$$\iff$$
 $(\forall (x,y) \in E^2, f(x) = f(y) \implies x = y)$



Une application injective



Une application non injective

Exemple 16 On considère l'application:

$$\begin{array}{ccc} f & : &]1, +\infty[& \longrightarrow &]2, +\infty[\\ & x & \longmapsto & \dfrac{2x}{x-1} \end{array}$$

Montrer que l'application f est injective.

$\blacksquare Soit (x,y) \in (]1,+\infty[)^2.$

$$f(x) = f(y) \Longrightarrow \frac{2x}{x-1} = \frac{2y}{y-1}$$

$$\Longrightarrow 2x(y-1) = 2y(x-1)$$

$$\Longrightarrow 2xy - 2x = 2yx - 2y$$

$$\Longrightarrow x = y$$

Ceci signifie que l'application f est injective.

Remarque 17.

$$f \text{ non injective } \iff \exists (x,y) \in E^2, f(x) = f(y) \text{ et } x \neq y$$

Exemple 18 On considère l'application:

$$f : \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto x^2 - 3x + 2$$

Montrer que f n'est pas injective.

f(1) = 0 = f(2) mais $1 \neq 2$. Ceci signifie que l'application f n'est donc pas injective.

Exemple 19 On considère l'application :

$$\begin{array}{cccc} f & : &]1, +\infty[& \longrightarrow & \mathbb{R} \\ & x & \longmapsto & x + \sqrt{x^2 - x} \end{array}$$

Montrer que f est injective.

■ $Soit (x, y) \in (]1, +\infty[)^2$.

$$f(x) = f(y) \Longrightarrow x + \sqrt{x^2 - x} = y + \sqrt{y^2 - y}$$

$$\Longrightarrow \left(\sqrt{x^2 - x} - \sqrt{y^2 - y}\right)^2 = (y - x)^2$$

$$\Longrightarrow \left(x^2 - x\right) - 2\sqrt{x^2 - x}\sqrt{y^2 - y} + \left(y^2 - y\right) = y^2 - 2yx + x^2$$

$$\Longrightarrow -x - y - 2\sqrt{x^2 - x}\sqrt{y^2 - y} + 2yx = 0$$

$$\Longrightarrow -x + yx - 2\sqrt{x^2 - x}\sqrt{y^2 - y} - y + yx = 0$$

$$\Longrightarrow x(y - 1) - 2\sqrt{x^2 - x}\sqrt{y^2 - y} + y(x - 1) = 0$$

$$\Longrightarrow \sqrt{x^2(y - 1)^2} - 2\sqrt{x^2 - x}\sqrt{y^2 - y} + \sqrt{y^2(x - 1)^2} = 0$$

$$\Longrightarrow \left(\sqrt{x(y - 1)} - \sqrt{y(x - 1)}\right)^2 = 0$$

$$\Longrightarrow \sqrt{x(y - 1)} = \sqrt{y(x - 1)}$$

$$\Longrightarrow x = y$$

Ceci signifie que l'application f est injective.

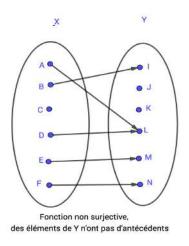
Surjection (ou applications surjectives)

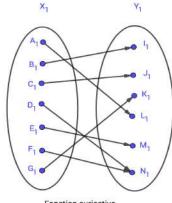
Définition 20 Soit f une application d'un ensemble non vide E vers un ensemble non vide F.

f est surjective si et seulement si tout élément de l'ensemble d'arrivée F a **au moins** un antécédent dans E par f.

Avec des quantificateurs, cela donne

$$f$$
 surjectives $\iff \forall y \in F, \exists x \in E/y = f(x)$





Fonction surjective, tous les éléments de Y₁ ont un antécédent

Exemple 21 On considère l'application:

$$\begin{array}{cccc} f & : &]1, +\infty[& \longrightarrow &]2, +\infty[\\ & x & \longmapsto & \dfrac{2x}{x-1} \end{array}$$

 $Montrer\ que\ f\ est\ surjective.$

■ Soit $y \in]2, +\infty[$. Résolvons l'équation f(x) = y dans $]1, +\infty[$. Soit $x \in]1, +\infty[$.

$$f(x) = y \iff \frac{2x}{x-1} = y$$

$$\iff 2x = y(x-1), \quad (x-1 \neq 0 \text{ pour } x \succ 1)$$

$$\iff 2x - yx = -y$$

$$\iff x(2-y) = -y$$

$$\iff x = \frac{y}{y-2}, \quad (y-2 \neq 0)$$

Comme $\frac{y}{y-2} \succ 1$ c'est-à-dire $\frac{y}{y-2} \in]1, +\infty[$, alors l'équation f(x) = y admet au moins une solution dans $]1, +\infty[$. Ceci signifie que f est surjective.

Exemple 22 On considère l'application :

$$\begin{array}{ccc} f & : & \mathbb{R} & \longrightarrow &]0,1] \\ & x & \longmapsto & \frac{1}{x^2 - 2x + 2} \end{array}$$

Montrer que f est surjective.

■ Soit $y \in [0,1]$. Résolvons l'équation f(x) = y dans \mathbb{R} .

Soit $x \in \mathbb{R}$

$$f(x) = y \iff \frac{1}{x^2 - 2x + 2} = y$$

$$\iff 1 = (x^2 - 2x + 2)y , (x^2 - 2x + 2 \neq 0 \text{ pour } x \in \mathbb{R})$$

$$\iff yx^2 - 2xy + 2y - 1 = 0$$

Le discriminant Δ de l'équation est :

$$\Delta = b^{2} - 4ac
= (-2y)^{2} - 4 \times y \times (2y - 1)
= 4y (1 - y)$$

on a $0 \prec y \leq 1$, alors : $0 \leq 1 - y \prec 1$ donc : $\Delta \geq 0$.

donc l'équation f(x) = y admet au moins une solution dans \mathbb{R} . Ceci signifie que l'application f est surjective.

Théorème 23 Soient E et F deux ensembles non vides puis f une application de E vers F.

$$f \ est \ surjective \iff f(E) = F$$

Démonstration 24.

Voir la série d'exercices.

Exemple 25 On considère l'application :

$$\begin{array}{ccc} f & : & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & x^2 + 4x + 1 \end{array}$$

Montrer que : $(\forall x \in \mathbb{R})$, $f(x) \geq -3$, l'application f est-elle surjective? Justifier.

 \blacksquare Soit $x \in \mathbb{R}$.

On étudie le signe de f(x) + 3 sur \mathbb{R}

$$f(x) + 3 = x^{2} + 4x + 1 + 3$$
$$= x^{2} + 4x + 4$$
$$= (x + 2)^{2}$$

pour tout x de \mathbb{R} on $a:(x+2)^2 \geq 0$. Donc

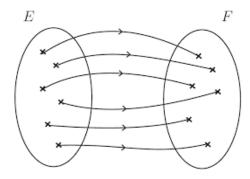
$$(\forall x \in \mathbb{R}) \,, \ f(x) \ge -3$$

L'application f n'est pas surjective, car -4 n'a pas d'antécédent par f.

Bijections, réciproque d'une bijection

Définition 26 Soit f une application d'un ensemble non vide E dans un ensemble non vide F

f est bijective si et seulement si tout élément de l'ensemble d'arrivée a **un et un seul** antécédent dans **E** par f.



Exemple 27 On considère l'application:

$$f: \mathbb{R} \setminus \{2\} \longrightarrow \mathbb{R} \setminus \{1\}$$

$$x \longmapsto \frac{x+1}{x-2}$$

Montrer que f est bijective.

■ Soit $y \in \mathbb{R} \setminus \{1\}$. Résolvons l'équation f(x) = y dans $\mathbb{R} \setminus \{2\}$. Soit $x \in \mathbb{R} \setminus \{2\}$.

$$f(x) = y \iff \frac{x+1}{x-2} = y$$

$$\iff x+1 = y(x-2) , (x-2 \neq 0 \text{ pour } x \in \mathbb{R} \setminus \{2\})$$

$$\iff x+1 = yx-2y$$

$$\iff x-yx = -2y-1$$

$$\iff x(1-y) = -2y-1$$

$$\iff x = \frac{2y+1}{y-1} , (y-1 \neq 0)$$

On $a: \frac{2y+1}{y-1} \neq 2$, en effet si $\frac{2y+1}{y-1} = 2$ c'est équivant à $2y+1 = 2y-2 \iff 1 = -2 \quad (absurde)$

donc, on déduit que $\frac{2y+1}{y-1} \in \mathbb{R} \setminus \{2\}$, alors l'équation f(x) = y admet une unique solution dans $\mathbb{R} \setminus \{2\}$, ceci signifie que f est bijective.

Exemple 28 On considère l'application:

$$f: \left[\frac{-1}{4}, +\infty\right[\longrightarrow \left[\frac{5}{2}, +\infty\right[\\ x \longmapsto \frac{5}{2} + \sqrt{x + \frac{1}{4}} \right]$$

Montrer que f est bijective.

■ Soit $y \in \left[\frac{5}{2}, +\infty\right[$. Résolvons l'équation f(x) = y dans $\left[\frac{-1}{4}, +\infty\right[$. Soit $x \in \left[\frac{-1}{4}, +\infty\right[$.

$$f(x) = y \iff \frac{5}{2} + \sqrt{x + \frac{1}{4}} = y$$

$$\iff \sqrt{x + \frac{1}{4}} = y - \frac{5}{2}$$

$$\iff x + \frac{1}{4} = \left(y - \frac{5}{2}\right)^2 , \quad \left(x + \frac{1}{4} \ge 0 \text{ pour } x \in \left[\frac{-1}{4}, +\infty\right[\right)$$

$$\iff x = \left(y - \frac{5}{2}\right)^2 - \frac{1}{4}$$

Comme $\left(y - \frac{5}{2}\right)^2 - \frac{1}{4} \ge \frac{1}{4}$, c'est-à-dire $\left(y - \frac{5}{2}\right)^2 - \frac{1}{4} \in \left[\frac{-1}{4}, +\infty\right[$ alors l'équation f(x) = y admet une unique solution dans $\left[\frac{-1}{4}, +\infty\right[$, ceci signifie que f est bijective.

Théorème 29 Soient E et F deux ensembles non vides puis f une application de E vers F.

f est bijective si et seulement si f est injective et surjective.

Exemple 30 On considère l'application :

$$f :]1, +\infty[\longrightarrow]2, +\infty[$$

$$x \longmapsto \frac{2x}{x-1}$$

Montrer que f est bijective.

■ On a d'après les exemples précédents que l'application f est injective et surjective, ceci signifie d'après le théorème ci-dessus que l'application f est bijective.

Quand $f: E \to F$ est bijective, pour chaque y de F, il existe un et un seul élément x de E tel que f(x) = y. On peut alors définir l'application de F vers E qui, à chaque y de F, associe l'unique élément x de E tel que y = f(x):

Définition 31 Soit f une application bijective d'un ensemble non vide E sur un ensemble non vide F. La **réciproque** de f est l'application notée f^{-1} définie par

$$\forall (x,y) \in E \times F, \quad f(x) = y \iff x = f^{-1}(y)$$

Exemple 32 Soit l'application

$$f : [2, +\infty[\longrightarrow [1, +\infty[$$

$$x \longmapsto x^2 - 4x + 5$$

Montrer que f est bijective et donner f^{-1} .

■ Soit $y \in [1, +\infty[$. Résolvons l'équation f(x) = y dans $[2, +\infty[$. Soit $x \in [2, +\infty[$

$$f(x) = y \iff x^2 - 4x + 5 = y$$

$$\iff (x^2 - 4x + 4) + 1 = y$$

$$\iff (x - 2)^2 = y - 1$$

$$\iff |x - 2| = \sqrt{y - 1}$$

$$\iff x = 2 + \sqrt{y - 1}$$

comme $2+\sqrt{y-1}\geq 2$ c'est-à-dire $2+\sqrt{y-1}\in [2,+\infty[$ ceci signifie que f est une application bijective. Sa réciproque est l'application f^{-1} définie par :

$$f^{-1}$$
: $[1, +\infty[\longrightarrow [2, +\infty[$
 $x \longmapsto 2 + \sqrt{x-1}]$

Théorème 33 Soient E et F deux ensembles non vides et f une application de E dans F. Si f est bijective, alors f^{-1} est bijective et $(f^{-1})^{-1} = f$.

Composition des applications

Définition 34 Soient E, F et G trois ensembles non vides. Soient f une application de E vers F et g une application de F vers G.

La composée des applications g et f , notée $g \circ f$, est l'application de E vers G définie par

$$\forall x \in E, \ (g \circ f)(x) = g(f(x)).$$

Exemple 35 Considèrons les deux applications

$$\begin{array}{ccc} f & : & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & x+1 \end{array}$$

et

$$g: \quad \mathbb{R} \longrightarrow \mathbb{R}$$
$$x \longmapsto x^2$$

Pour tout réel x, on a

$$(g \circ f)(x) = g(f(x)) = (f(x))^2 = (x+1)^2$$

et

$$(f \circ g)(x) = f(g(x)) = g(x) + 1 = x^2 + 1$$

Remarque 36.

1. En général

$$g \circ f \neq f \circ g$$

2. Soit E un ensemble non vide. L'identité de E est l'application de E dans lui-même définie par :

$$\forall x \in E, \quad Id_E(x) = x$$

Théorème 37 Soient E, F, G et H quatre ensembles non vides. Soient $f \in F^E$, $g \in G^F$ et $h \in H^G$.

- 1. $f \circ (g \circ h) = (f \circ g) \circ h$.
- 2. $Id_F \circ f = f$ et $f \circ Id_E = f$.

Remarque 38.

1. Soit E un ensemble non vide puis f est une application de E dans E. Pour $n \in \mathbb{N}^*$, on pose

$$\underbrace{f \circ \dots \circ f}_{n \ facteurs} = f^n$$

2. En générale

$$\forall n \in \mathbb{N}^*, (f \circ g)^n \neq f^n \circ g^n$$

Fonction indicatrice (ou caractéristique) d'une partie

Définition 39 Soit E est un ensemble non vide et A une partie donnée de E. Pour $x \in E$, on pose

$$\chi_{A}(x) = \begin{cases} 1 & si \ x \in A \\ 0 & si \ x \notin A \end{cases}$$

Restriction, prolongement

Définition 40 Soit f une application de E vers F.

ullet Soit A une partie non vide de E la restriction de f à A, notée $f_{\diagup A}$, est l'application :

$$f_{\nearrow A} \colon A \longrightarrow F$$
 $x \longmapsto f(x)$

■ Soit $E \subset E'$ on dit qu'une application g de E' vers F est un **prolongement** de f à E'si $g_{/E} = f$.

Exemple 41.

\blacksquare Soit f l'application

$$\begin{array}{ccc} f & : & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & 3 \left| 1 - x^2 \right| + x \end{array}$$

On considère la restriction de l'application f sur [-1,1], par

$$f_{\nearrow[-1,1]}: [-1,1] \longrightarrow \mathbb{R}$$

$$x \longmapsto -3x^2 + x + 3$$

\blacksquare Soit f l'application

$$\begin{array}{cccc} f & : & \mathbb{R}^+ & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & x \end{array}$$

On considère l'application g le prolongement de f à \mathbb{R} .

$$\begin{array}{cccc} g & : & \mathbb{R} & \longrightarrow & \mathbb{R} \\ & x & \longmapsto & |x| \end{array}$$

FIN

Pr: Yahya MATIOUI

www.etude - generale.com