Correction d'examen 2

Exercice 1 (4 points)

On considère la suite numérique $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0=\frac{3}{2}$ et pour tout n de \mathbb{N} :

$$u_{n+1} = \frac{1}{2021}u_n + \frac{2020}{2021}$$

1. a) Montrons par récurrence que : $(\forall n \in \mathbb{N})$, $u_n \ge 1$.

Initialisation : Si n=0, alors $u_0=\frac{3}{2}$ et comme $u_0\geq 1$. Donc, l'inégalité est vraie.

Hérédité : Soit $n \in \mathbb{N}$. On suppose que $u_n \geq 1$, et on montre que : $u_{n+1} \geq 1$. évaluons le signe de la différence : $u_{n+1} - 1$

$$u_{n+1} - 1 = \frac{1}{2021}u_n + \frac{2020}{2021} - 1$$
$$= \frac{1}{2021}u_n - \frac{1}{2021}$$

et comme $u_n \ge 1$, donc : $\frac{1}{2021}u_n - \frac{1}{2021} \ge 0$. D'où : $u_{n+1} \ge 1$.

Donc, d'après le principe de récurrence on déduit que pour tout n de \mathbb{N} , On $a: u_n \geq 1$.

b)

• Soit $n \in \mathbb{N}$.

Vérifions que : $u_{n+1} - u_n = \frac{2020}{2021} (1 - u_n)$

$$u_{n+1} - u_n = \frac{1}{2021}u_n + \frac{2020}{2021} - u_n$$

$$= \frac{1}{2021}u_n - u_n + \frac{2020}{2021}$$

$$= \frac{-2020}{2021}u_n + \frac{2020}{2021}$$

$$= \frac{2020}{2021}(1 - u_n)$$

• Montrons que la suite $(u_n)_{n\in\mathbb{N}}$ est décroissante.

On $a: u_{n+1} - u_n = \frac{2020}{2021}(1 - u_n)$, et comme $u_n \ge 1$ alors : $1 - u_n \le 0$. Donc : $u_{n+1} - u_n \le 0$. Ceci signifie que la suite $(u)_{n \in \mathbb{N}}$ est décroissante.

c) La suite $(u_n)_{n\in\mathbb{N}}$ est décroissante, donc : $u_n \leq u_{n-1} \leq u_{n-2} \leq ... \leq u_0$. On déduit la majoration suivante : $u_n \leq u_0$, et comme $u_0 = \frac{3}{2}$, on obtient :

1

$$(\forall n \in \mathbb{N}), u_n \leq \frac{3}{2}$$

- 2. Soit $(v_n)_{n\in\mathbb{N}}$ la suite numérique telle que : $v_n=u_n-1$.
 - a) Montrons que la suite $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison $q=\frac{1}{2021}$ Soit $n\in\mathbb{N}$. On a:

$$\begin{array}{rcl} v_{n+1} & = & u_{n+1} - 1 \\ & = & \frac{1}{2021} u_n - \frac{1}{2021} \\ & = & \frac{1}{2021} \left(u_n - 1 \right) \\ & = & \frac{1}{2021} v_n \end{array}$$

Ceci signifie que la suite $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison $q=\frac{1}{2021}$ et de premier terme $v_0=u_0-1=\frac{1}{2}$.

- **b)** Soit $n \in \mathbb{N}$.
- On exprime v_n en fonction de n.

La suite $(v_n)_{n\in\mathbb{N}}$ est géométrique de raison $q=\frac{1}{2021}$. Donc : $v_n=v_p\times q^{n-p}$. Comme p=0, alors on obtient :

$$v_n = \frac{1}{2 \times 2021^n}$$

• On exprime u_n en fonction de n.

On $a: v_n = \frac{1}{2 \times 2021^n}$, et comme : $v_n = u_n - 1$ alors : $u_n - 1 = \frac{1}{2 \times 2021^n}$. Donc :

$$(\forall n \in \mathbb{N}), \quad u_n = 1 + \frac{1}{2 \times 2021^n}$$

3. Montrons que : $\lim_{n \to +\infty} \frac{\ln(u_n)}{u_n - 1} = 1$

$$\lim_{n \longrightarrow +\infty} \frac{\ln(u_n)}{u_n - 1} = \lim_{n \longrightarrow +\infty} \frac{\ln\left(1 + \frac{1}{2 \times 2021^n}\right)}{\frac{1}{2 \times 2021^n}}$$

On sait que : $-1 \prec \frac{1}{2021} \prec 1$. Donc : $\lim_{n \longrightarrow +\infty} \frac{1}{2021^n} = 0$. Alors on pose $N = \frac{1}{2 \times 2021^n}$ quand n tend vers $+\infty$, on a N tend vers 0. Donc on obtient : $\lim_{N \longrightarrow 0} \frac{\ln(1+N)}{N} = 1$. (limite usuelle) On a donc :

$$\lim_{n \longrightarrow +\infty} \frac{\ln(u_n)}{u_n - 1} = 1$$

Exercice 2 (Les nombres complexes)

1. Dans l'ensemble $\mathbb C$ des nombres complexes, on considère l'équation :

$$(E): z^2 - 2(\sqrt{2} + \sqrt{6})z + 16 = 0$$

2

a) Vérifions que le discriminant de l'équation (E) est : $\Delta = -4(\sqrt{6} - \sqrt{2})^2$

$$\Delta = \left[-2(\sqrt{2} + \sqrt{6}) \right]^2 - 64$$

$$= 4(2 + 2\sqrt{12} + 6) - 64$$

$$= 32 + 8\sqrt{12} - 64$$

$$= -32 + 8\sqrt{12}$$

$$= -4(\sqrt{6} - 2\sqrt{12} + \sqrt{2})$$

$$= -4(\sqrt{6} - \sqrt{2})^2$$

b) L'équation (E) admet deux solutions complexes conjuguées z_1 et z_2 telles que :

$$z_{1} = \frac{-b + i\sqrt{-\Delta}}{2a} = (\sqrt{2} + \sqrt{6}) + i(\sqrt{6} - \sqrt{2})$$
et : $z_{2} = \overline{z_{1}} = \overline{(\sqrt{2} + \sqrt{6}) + i(\sqrt{6} - \sqrt{2})} = (\sqrt{2} + \sqrt{6}) - i(\sqrt{6} - \sqrt{2}).$ Donc
$$S = \left\{ (\sqrt{2} + \sqrt{6}) + i(\sqrt{6} - \sqrt{2}), (\sqrt{2} + \sqrt{6}) - i(\sqrt{6} - \sqrt{2}) \right\}$$

2. a) Vérifions que : $b\bar{c} = a$

$$b\overline{c} = (1 + i\sqrt{3})(\sqrt{2} - i\sqrt{2})$$

= $\sqrt{2} - i\sqrt{2} + i\sqrt{6} + \sqrt{6}$
= $(\sqrt{2} + \sqrt{6}) + i(\sqrt{6} - \sqrt{2})$

donc comme $b\overline{c} = a$ alors $b\overline{c}.c = ac$, et comme $c\overline{c} = (\sqrt{2} - i\sqrt{2})(\sqrt{2} + i\sqrt{2}) = 4$. Alors on obtient :

$$ac = 4b$$

b) L'écriture trogonométrique des nombres complexes : b et c.

$$b = 1 + i\sqrt{3}$$

$$= 2(\frac{1}{2} + i\frac{\sqrt{3}}{2})$$

$$= 2(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}).$$

 et

$$c = \sqrt{2} + i\sqrt{2}$$
$$= 2\left(\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}\right)$$
$$= 2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right).$$

c) On déduit que : $a = 4(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12})$. cherchons le module de a:

$$|a| = |b\overline{c}| = |b| |\overline{c}| = 2 \times 2 = 4$$

l'argument du complexe a:

$$arg(a) \equiv arg(b\overline{c}) [2\pi]$$

 $\equiv arg(\overline{c}) + arg(b) [2\pi]$

et comme $\arg(\bar{c}) \equiv -\arg(c) [2\pi]$, alors $\arg(\bar{c}) \equiv -\frac{\pi}{4} [2\pi]$. Donc :

$$\arg(a) \equiv -\frac{\pi}{4} + \frac{\pi}{3} [2\pi]$$
$$\equiv \frac{\pi}{12} [2\pi]$$

On aura

$$a = 4\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)$$

- 3. Dans le plan complexe rapporté à un repère orthonomré direct $(O, \overrightarrow{u}, \overrightarrow{v})$; on considèreles points B, C et D d'affixes respectives b, c et d telle que $d = a^4$: Soient z l'affixe d'un point M du plan et z' l'affixe de M' image de M par le rotation R de centre O et d'angle $\frac{\pi}{12}$.
 - a) vérifions que : $z' = \frac{1}{4}az$

$$R(M)$$
 = $M' \iff z' - z_o = e^{i\frac{\pi}{12}}(z - z_o)$
 $\iff z' = \frac{a}{4}z$

 $\operatorname{car} e^{i\frac{\pi}{12}} = \cos \frac{\pi}{12} + i \sin \frac{\pi}{12} = \frac{a}{4}.$

b) L'image du point C par la rotation R.

Notons C' l'image du point C par la rotation R de centre O et d'angle $\frac{\pi}{12}$.

$$R(C) = C' \iff c' = \frac{a}{4}c = \frac{ac}{4} = b$$

donc: C' = B. C'est-à-dire l'image du point C par la rotation R de centre O et d'angle $\frac{\pi}{12}$ est le point B.

c) La nature du triangle OBC.

On a

$$R(C) = B \iff \left\{ \begin{array}{c} OB = OC \\ \left(\overrightarrow{\overrightarrow{OC}}, \overrightarrow{OB}\right) \equiv \frac{\pi}{12} \left[2\pi\right] \end{array} \right.$$

Donc, le triangle OBC est isocéle.

d) Montrons que : $a^4 = 128b$

On $a: a=4(\cos\frac{\pi}{12}+i\sin\frac{\pi}{12})$, et d'après la formule de Moivre, on obtient :

$$a^{4} = 4^{4} \cdot \left(\cos\left(4 \times \frac{\pi}{12}\right) + i\sin\left(4 \times \frac{\pi}{12}\right)\right)$$

$$= 256 \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

$$= \frac{256}{2}(1 + i\sqrt{3})$$

$$= 128b$$

 $D\'{e}duction:$

on a:

$$\frac{d - z_o}{b - z_o} = \frac{d}{b} = \frac{a^4}{b} = \frac{128b}{b} = 128 \in \mathbb{R}$$

Donc, les points O, B et D sont alignés.

Exercice 3 (Les intégrales)

Soit $\theta \in \mathbb{R}$, on pose: $A(\theta) = \cos^2(\theta) \sin^4(\theta)$.

1. Montrons que : $\int_0^{\frac{\pi}{2}} A(\theta) d\theta = \frac{\pi}{32}$

On utilise les formules d'euler pour linéariser l'expression $A(\theta)$, telles que : $\cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2}$ et $\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$.

Donc:

$$A(\theta) = \cos^{2}(\theta) \sin^{4}(\theta)$$

$$= \left(\frac{e^{i\theta} + e^{-i\theta}}{2}\right)^{2} \left(\frac{e^{i\theta} - e^{-i\theta}}{2i}\right)^{4}$$

$$= \frac{\left(e^{i\theta} + e^{-i\theta}\right)^{2} \left(e^{i\theta} - e^{-i\theta}\right)^{2} \left(e^{i\theta} - e^{-i\theta}\right)^{2}}{16 \times 4}$$

$$= \frac{\left[\left(e^{i\theta} + e^{-i\theta}\right) \left(e^{i\theta} - e^{-i\theta}\right)\right]^{2} \left(e^{i\theta} - e^{-i\theta}\right)^{2}}{64}$$

$$= \frac{\left(e^{2i\theta} - e^{-2i\theta}\right)^{2} \left(e^{i\theta} - e^{-i\theta}\right)^{2}}{64}$$

$$= \frac{\left(e^{2i\theta} - e^{-2i\theta}\right)^{2} \left(e^{i\theta} - e^{-i\theta}\right)^{2}}{64}$$

$$= \frac{\left(e^{4i\theta} - 2 + e^{-4i\theta}\right) \left(e^{2i\theta} - 2 + e^{-2i\theta}\right)}{64}$$

$$= \frac{e^{6i\theta} - 2e^{4i\theta} + e^{2i\theta} - 2e^{2i\theta} + 4 - 2e^{-2i\theta} + e^{-2i\theta} - 2e^{-4i\theta} + e^{-6i\theta}}{64}$$

$$= \frac{\left(e^{6i\theta} + e^{-6i\theta}\right) - 2\left(e^{4i\theta} + e^{-4i\theta}\right) + \left(e^{2i\theta} + e^{-2i\theta}\right) - 2\left(e^{2i\theta} + e^{-2i\theta}\right) + 4}{64}$$

$$= \frac{2\cos(6\theta) - 4\cos(4\theta) + 2\cos(2\theta) - 4\cos(2\theta) + 4}{64}$$

$$= \frac{2\cos(6\theta) - 4\cos(4\theta) - 2\cos(2\theta) + 4}{64}$$

$$= \frac{\cos(6\theta)}{32} - \frac{\cos(4\theta)}{16} - \frac{\cos(2\theta)}{32} + \frac{1}{16}$$

Alors:

$$\int_{0}^{\frac{\pi}{2}} A(\theta) d\theta = \int_{0}^{\frac{\pi}{2}} \frac{\cos(6\theta)}{32} - \frac{\cos(4\theta)}{16} - \frac{\cos(2\theta)}{32} + \frac{1}{16} d\theta$$

$$= \frac{1}{32} \int_{0}^{\frac{\pi}{2}} \cos(6\theta) d\theta - \frac{1}{16} \int_{0}^{\frac{\pi}{2}} \cos(4\theta) d\theta - \frac{1}{32} \int_{0}^{\frac{\pi}{2}} \cos(2\theta) d\theta + \frac{1}{16} \int_{0}^{\frac{\pi}{2}} d\theta$$

$$= \frac{1}{32} \left[\frac{\sin(6\theta)}{6} \right]_{0}^{\frac{\pi}{2}} - \frac{1}{16} \left[\frac{\sin(4\theta)}{4} \right]_{0}^{\frac{\pi}{2}} - \frac{1}{32} \left[\frac{\sin(2\theta)}{2} \right]_{0}^{\frac{\pi}{2}} + \frac{1}{16} [\theta]_{0}^{\frac{\pi}{2}}$$

$$= \frac{1}{32} (0 - 0) - \frac{1}{16} (0 - 0) - \frac{1}{32} (0 - 0) + \frac{1}{16} \times \frac{\pi}{2}$$

$$= \frac{\pi}{32}$$

On obtient finalement

$$\int_{0}^{\frac{\pi}{2}} A(\theta) d\theta = \frac{\pi}{32}$$

2. • En utilisant une intégration par parties, calculons l'intégrale suivante : $\int_0^1 (1+2x) e^{2x} dx$

$$\begin{cases} u(x) = 1 + 2x \\ v'(x) = e^{2x} \end{cases} \implies \begin{cases} u'(x) = 2 \\ v(x) = \frac{e^{2x}}{2} \end{cases}$$

donc

$$\int_0^1 (1+2x) e^{2x} dx = \left[\frac{(1+2x) e^{2x}}{2} \right]_0^1 - \int_0^1 e^{2x} dx$$
$$= \frac{3}{2} e^2 - \frac{1}{2} - \left[\frac{e^{2x}}{2} \right]_0^1$$
$$= \frac{3}{2} e^2 - \frac{1}{2} - \left(\frac{e^2}{2} - \frac{1}{2} \right)$$
$$= e^2$$

On obtient finalement

$$\int_0^1 (1+2x) e^{2x} dx = e^2$$

• En utilisant une intégration par parties, calculons l'intégrale $\int_0^{e-1} \ln(1+x) dx$:

$$\begin{cases} u(x) = \ln(1+x) \\ v'(x) = 1 \end{cases} \implies \begin{cases} u'(x) = \frac{1}{1+x} \\ v(x) = x \end{cases}$$

donc

$$\int_0^{e-1} \ln(1+x) dx = [x \cdot \ln(1+x)]_0^{e-1} - \int_0^{e-1} \frac{x}{1+x} dx$$

$$= (e-1) - \int_0^{e-1} \frac{x+1-1}{1+x} dx$$

$$= (e-1) - \int_0^{e-1} 1 - \frac{1}{x+1} dx$$

$$= (e-1) - [x - \ln(x+1)]_0^{e-1}$$

$$= (e-1) - (e-1-1)$$

$$= 1$$

On obtient finalement

$$\int_0^{e-1} \ln(1+x) \, dx = 1$$

Problème d'analyse 4 (L'étude de la fonction exponentielle)

On considère la fonction numérique f définie sur \mathbb{R} par :

$$f(x) = -x + \frac{5}{2} - \frac{1}{2}e^{x-2}(e^{x-2} - 4)$$

et (C) sa courbe représentative dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$. (unité : 2cm).

1. a) • Calculons: $\lim_{x \to -\infty} f(x) = +\infty$:

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} -x + \frac{5}{2} - \frac{1}{2} e^{x-2} (e^{x-2} - 4) = +\infty$$

$$car : \lim_{x \to -\infty} e^{x-2} = 0 \text{ et } \lim_{x \to -\infty} \frac{1}{2} e^{x-2} (e^{x-2} - 4) = 0 \text{ et } \lim_{x \to -\infty} -x + \frac{5}{2} = +\infty$$

• Calculons: $\lim_{x \to +\infty} f(x) = -\infty$:

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} -x + \frac{5}{2} - \frac{1}{2} e^{x-2} (e^{x-2} - 4) = -\infty$$

$$car : \lim_{x \to +\infty} e^{x-2} = +\infty \text{ et } \lim_{x \to +\infty} -\frac{1}{2} e^{x-2} (e^{x-2} - 4) = -\infty$$

$$et \lim_{x \to +\infty} -x + \frac{5}{2} = -\infty$$

b) Pour montrer que la droite (Δ) d'équation $y = -x + \frac{5}{2}$ est une asymptote à la courbe (C) au voisinage de $-\infty$, il suffit de montrer que : $\lim_{x \to -} f(x) - (-x + \frac{5}{2}) = 0$.

$$\lim_{x \to -\infty} f(x) - (-x + \frac{5}{2}) = \lim_{x \to -\infty} -x + \frac{5}{2} - \frac{1}{2} e^{x-2} (e^{x-2} - 4) + x - \frac{5}{2}$$
$$= \lim_{x \to -\infty} -\frac{1}{2} e^{x-2} (e^{x-2} - 4) = 0$$

Donc, la droite (Δ) d'équation $y = -x + \frac{5}{2}$ est une asymptote à la courbe (C) au voisinage de $-\infty$.

• Résolvons l'équation dans l'ensemble \mathbb{R} : $e^{x-2} - 4 = 0$

$$e^{x-2} - 4 = 0 \iff e^{x-2} = 4 \iff x - 2 = \ln 4 \iff x = 2 + \ln 4$$

Donc

$$S = \{2 + \ln 4\}$$

évaluons le signe de la différence $f(x) - (-x + \frac{5}{2})$:

$$f(x) - (-x + \frac{5}{2}) = -\frac{1}{2}e^{x-2}(e^{x-2} - 4)$$

comme $\frac{-1}{2}e^{x-2} \prec 0$ pour tout x dans \mathbb{R} , alors on étudie le signe de l'expression $e^{x-2} - 4$ pour tout $x \in \mathbb{R}$.

*

$$e^{x-2} - 4 \ge 0 \iff x - 2 \ge \ln 4 \iff x \ge 2 + \ln 4 \iff x \in [2 + \ln 4, +\infty[$$

$$e^{x-2} - 4 \le 0 \iff x - 2 \le \ln 4 \iff x \le 2 + \ln 4 \iff x \in]-\infty, 2 + \ln 4]$$

On obtient

$$f(x) - (-x + \frac{5}{2}) \le 0 \iff x \in [2 + \ln 4, +\infty[$$

 $f(x) - (-x + \frac{5}{2}) \ge 0 \iff x \in]-\infty, 2 + \ln 4]$

Ceci signifie que :

- Si $x \in]2 + \ln 4, +\infty[$ alors : $f(x) (-x + \frac{5}{2}) < 0$. Ceci signifie que (C) est au dessous de la droite (Δ) sur l'intervalle $]2 + \ln 4, +\infty[$.
- Si $x \in]-\infty, 2 + \ln 4[$ alors : $f(x) (-x + \frac{5}{2}) \succ 0$. Ceci signifie que (C) est au dessus de la droite (Δ) sur l'intervalle $]-\infty, 2 + \ln 4[$.
- (C_f) et (Δ) se coupent en point d'abscisse $2 + \ln 4$.
- 2. a) Montrons que : $\lim_{x \to +\infty} \frac{f(x)}{x}$:

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \frac{-x + \frac{5}{2} - \frac{1}{2}e^{x-2}(e^{x-2} - 4)}{x}$$

$$= \lim_{x \to +\infty} -1 + \frac{5}{2x} - \frac{e^{x-2}(e^{x-2} - 4)}{2x}$$

$$= \lim_{x \to +\infty} -1 + \frac{5}{2x} - \frac{e^{x-2}}{x-2} \times \frac{x-2}{2x} \times (e^{x-2} - 4) = -\infty$$

 $car: \lim_{x \longrightarrow +\infty} \frac{e^{x-2}}{x-2} = +\infty \text{ et } \lim_{x \longrightarrow +\infty} \frac{x-2}{2x} = \frac{1}{2} \text{ et } \lim_{x \longrightarrow +\infty} \left(e^{x-2} - 4\right) = +\infty \text{ et } \lim_{x \longrightarrow +\infty} \frac{5}{2x} = 0.$

Interprétation géométrique.

La courbe (C) admet une branche parabolique de direction l'axe des ordonnées au voisinage de $+\infty$.

b) Calculons la fonction dérivée f' sur \mathbb{R} .

La fonction f est dérivable sur \mathbb{R} comme la somme et le produit des fonctions dérivables sur \mathbb{R} . $(x \longmapsto -x + \frac{5}{2}, x \longmapsto \frac{-1}{2}e^{x-2}$ et $x \longmapsto e^{x-2} - 4)$. calculons f'(x) pour tout $x \in \mathbb{R}$.

$$f'(x) = (-x + \frac{5}{2} - \frac{1}{2}e^{x-2}(e^{x-2} - 4))'$$

$$= -1 - \left(\frac{1}{2}e^{x-2}(e^{x-2} - 4) + \frac{1}{2}e^{x-2} \times e^{x-2}\right)$$

$$= -1 - \left(\frac{1}{2}e^{2x-4} - 2e^{x-2} + \frac{1}{2}e^{2x-4}\right)$$

$$= -1 - e^{2x-4} + 2e^{x-2}$$

$$= -((e^{x-2})^2 - 2e^{x-2} + 1)$$

$$= -(e^{x-2} - 1)^2$$

c) Le tableau de variations de la fonction f.

comme $(e^{x-2}-1)^2 \ge 0$, alors : $-(e^{x-2}-1)^2 \le 0$. Donc : $f'(x) \le 0$ pour tout $x \in \mathbb{R}$.

$$f'(x) = 0 \iff -(e^{x-2} - 1)^2 = 0 \iff x - 2 = 0 \iff x = 2.$$

On déduit le tableau de variations suivant :

x	$-\infty$	2	$+\infty$
f'(x)		þ	_
f	$+\infty$	2	$-\infty$

3. La fonction f' est dérivable sur \mathbb{R} . Calculons f''(x) pour tout $x \in \mathbb{R}$.

$$f'''(x) = -2e^{x-2}(e^{x-2} - 1)$$

comme $-2e^{x-2} \prec 0$, pour tout x dans \mathbb{R} , alors on étudie le signe de l'expression $e^{x-2}-1$ pour tout $x \in \mathbb{R}$.

Donc

$$e^{x-2} - 1 \geq 0 \iff e^{x-2} \geq 1$$

$$\iff x - 2 \geq 0$$

$$\iff x \geq 2$$

$$\iff x \in [2, +\infty[$$

et

$$e^{x-2} - 1 \leq 0 \iff e^{x-2} \leq 1$$

$$\iff x - 2 \leq 0$$

$$\iff x \leq 2$$

$$\iff x \in]-\infty, 2]$$

On résume le signe de la fonction f'' dans le tableau suivant :

x	$-\infty$ 2	$2 + \infty$
$-2e^{(x-2)}$	1	1
$e^{(x-2)}$ _1	_ () +
f''(x)	+	_
convexite-de(C)	(C)convexe	(C)concave

Puisque la fonction f'' s'annule en 2 avec un changement de signe, alors le point A(2,2) est un point d'inflexion de la courbe (C).

- 4. Montrons que l'équation f(x) = 0 admet unique solution α telle que : $\alpha \in]2 + \ln 3, 2 + \ln 4[$ On a:
 - La fonction f est continue sur \mathbb{R} (car elle est dérivable sur \mathbb{R}), en particulier elle est continue sur $]2 + \ln 3, 2 + \ln 4[$.
 - La fonction f est strictement décroissante sur $]2 + \ln 3, 2 + \ln 4[$.
 - $f(2+\ln 3) \times f(2+\ln 4) \prec 0$.

On conclut d'aprés le T.V.I que l'équation f(x) = 0 admet unique solution α dans l'intervalle $[2 + \ln 3, 2 + \ln 4]$.

 $Autrement\ dit:$

$$\exists!\alpha \in]2 + \ln 3, 2 + \ln 4[/f(\alpha) = 0]$$

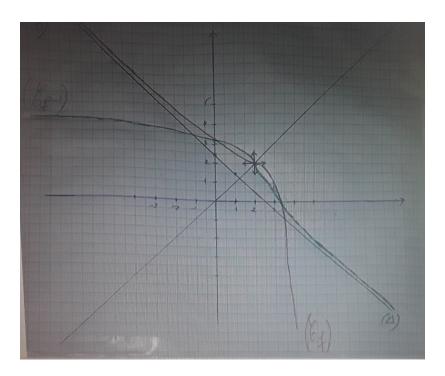
• Cherchons un encadrement de α de longueur $\ln 4 - \frac{\ln 12}{2}$:

on calcule le centre de l'intervalle]2 + ln 3, 2 + ln 4 [le nombre c tel que :, c = $\frac{2+\ln 3+2+\ln 4}{2} = \frac{4+\ln 12}{2} \sim 3.2425$, et comme $f(\frac{4+\ln 12}{2}) \sim 0, 185466$ et $f(2+\ln 4) = -0, 886294$, et comme $f(\frac{4+\ln 12}{2}) \times f(2+\ln 4) \prec 0$. Donc :

$$\frac{4 + \ln 12}{2} \prec \alpha \prec 2 + \ln 4$$

 $la\ longueur\ de\ l'encadrement\ est: 2 + \ln 4 - (\frac{4 + \ln 12}{2}) = 2 + \ln 4 - 2 - \frac{\ln 12}{2} = \ln 4 - \frac{\ln 12}{2}.$

5.



- 6. a) La fonction f est continue et strictement décroissante sur \mathbb{R} , alors elle admet une fonction réciproque f^{-1} définie sur J telle que : $J = f(I) = f(\mathbb{R}) = \mathbb{R}$
 - **b)** Voir la courbe.
 - c) $Calculons : (f^{-1})'(2 \ln 3).$

On $a: f(2+\ln 3) = 2-\ln 3$ et comme f est dérivable en $2+\ln 3$ et $f'(2+\ln 3) \neq 0$, alors f^{-1} est dérivable en $2-\ln 3$ et on a:

$$(f^{-1})'(2 - \ln 3) = \frac{1}{f'(f^{-1}(2 - \ln 3))} = \frac{1}{f'(2 + \ln 3)} = \frac{-1}{4}$$

FIN

Pr: Yahya MATIOUI

www.etude-generale.com